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Abstract

The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed
programs that need to handle recon�guration events at the application layer. This model,
called membership views, provides an abstraction in which events such as site failures, network
partitions, and normal join-leave events are viewed as group reformations. RMP provides access
to this model through an application programming interface (API) that noti�es an application
when a group is reformed as the result of a some event. RMP provides applications with reliable
delivery of messages using an underlying IP Multicast [22, 10] media to other group members in
a distributed environment even in the case of reformations. A distributed application can use
various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This
paper explores the implementation details of the mechanisms in RMP that provide distributed
applications with membership view information and fault recovery capabilities.

1 Introduction

Many distributed programs need to be recon�gured while continuing to provide ser-

vices, but how a system is recon�gured is often speci�c to a particular application.

Therefore, any application programming interface (API) to a distributed environment

should provide an abstract model of recon�guration because applications will di�er in

how they handle changes in a distributed environment. For example, teleconferencing

applications should be highly resilient to site failures or network partitions because such

�This work is supported by NASA Grant NAG 5-2129 and NASA Cooperative Research Agreement NCCW-0040.

More information pertaining to RMP can be found at http://research.ivv.nasa.gov/projects/RMP/RMP.html

1



failures can be modeled as normal join-leave changes to the group of conference partic-

ipants. However, distributed database systems that require atomic transactions will be

highly sensitive to such failures. In either case, the application must decide what levels

of fault tolerance it needs and how to handle changes to other sites and the network in

order to continue service.

The Reliable Multicasting Protocol (RMP) [19, 4, 5] is a unique, high-performance

protocol developed at West Virginia University in cooperation with NASA that will

soon be presented for consideration as an Internet standard and is being used currently

in many network software applications. RMP presents an API that provides applica-

tions with a simpli�ed model of dealing with complex changes in distributed, group

communication environments. RMP provides a programming abstraction, called mem-

bership views, for handling reliability, resiliency, fault recovery, and ordering issues in a

distributed application.

RMP is based on an algorithm originally developed for reliable delivery of data in

broadcast-capable, packet-switching networks [7]. The original algorithm allows sites

in a packet-switching network to establish a token ring for distributing responsibility

for acknowledgments. A single token is passed from site to site around the ring and

only the holder of the token (called the current token site) needs to acknowledge certain

data packets. RMP has high-performance characteristics because acknowledgments

themselves are multicast to all other token ring sites. This approach orders the data

packets consistently across all sites and provides a means of passing the token to a new

token site.

When a site gets the token (i.e., it becomes the current token site), it multicasts an

acknowledgment if and only if it has seen all data packets since the last acknowledg-

ment it received. The token is passed in the multicast acknowledgment packet. The

acknowledgment packet includes the source and sequence numbers of data packets it is

acknowledging. This allows each site to detect if any packets are missing. A site will use
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negative acknowledgments to request retransmission of any missing packets. When all

packets since the last acknowledgment received have been received by the current token

site, then that site can multicast its acknowledgment and thus pass the token to the

next site on the ring. When a token site sends an acknowledgment, it is guaranteed that

all data packets since it last held the token have been received by all sites. The sender

of a packet assumes that all messages since it last had the token have been received by

the other sites within a requested quality of service (QoS) level. A packet is marked

delivered if and only if it satis�es its QoS level of delivery. The QoS level allows for

resilience of the protocol in the presence of site failures and network partitions. In the

case of failures, the token ring reforms itself around the failed site. In the presence of

persistent failures, the application program using RMP must decide to degrade the QoS

level or try again.

RMP di�ers from previous reliable broadcast protocols in that an acknowledgment

packet may acknowledge an arbitrary number of data packets. Previous protocols spec-

i�ed that each data and acknowledgment packets have a one-to-one relationship. Our

approach, however, improves throughput in networks with sporadic losses. Each site in

a token ring maintains a data structure called an Ordering Queue (OrderingQ) in which

acknowledgments and data packets are organized based on timestamps. An Ordering

Queue is consistent if and only if there are no missing data packets for pending acknowl-

edgments. A missing packet will appear as an empty slot in the OrderingQ that must

be �lled. When a site becomes the token site, all empty slots in the OrderingQ since the

last acknowledgment received must be �lled. For example, in Figure 1 we show 3 sites

of a token ring and a global sequence of events. No site has complete knowledge of this

sequence. It is only shown to illustrate a possible scenario. Next to each site is a list of

the messages sent by that site. First, site A sends a data packet signi�ed as Data(A,1)

where the �rst parameter is the sending site and the second is the sequence number of

the message. Sequence numbers are unique to individual sites. Second, site B sends a
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Figure 1: An example of RMP operation

data packet (Data(B,1)). The initial token site is site B who then acknowledges both

data packets and passes the token to site A. The Ack((A,1),(B,1),A,1) message contains

a list of source identi�ers and sequence numbers for two packets, followed by the next

token site and the timestamp of the acknowledgment.

In this example, we assume that site C missed the data packet Data(B,1). Site C

realizes it has missed a packet after it receives the Ack((A,1),(B,1),A,1) message. It

knows this because the Data(B,1) packet is listed in the Ack message from B. Each

slot in an OrderingQ corresponds to a timestamp whether explicit in the case of Ack

messages or implicit in the case of Data packets. Site C will multicast a Nack message to

request the data packet to �ll the one slot in its OrderingQ at timestamp 3. Any other

site in the ring should respond to this Nack with the requested missing packet. In this

example, Site B responds to the Nack by retransmitting the Data(B,1) message. The

sequence number identi�es this message uniquely to distinguish it from new messages.
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If a period passes during which no data packets are transmitted, a site will time-out and

subsequently send a multicast NULL Ack packet. In our example, Site A sends a NULL

Ack with timestamp 4 after waiting. This NULL Ack passes the token to site C. After

the site B retransmits the packet Data(B,1), site A multicasts another data packet with

sequence number 2 as Data(A,2). Since site C's OrderingQ is consistent, it multicasts

an acknowledgment of the Data(A,2) packet and passes the token to site B. The global

ordering of events is an artifact of the timestamps and may or may not reect the actual

order of events. This decentralized notion of ordering, called global synchrony, allows

applications to synchronize their activities based on group events instead of a single,

centralized authority.

2 Background

The basic Rmp protocol provides what can be thought of as N-way virtual circuits,

called groups, between sets of processes connected by a multicast medium. It is fully

distributed, so that all processes play the same role in communication. While primarily

using NACKs for error detection and retransmission, Rmp provides true reliability and

limits the necessary bu�er space by passing a token around the members of a group.

Rmp provides a wide range of reliability and ordering guarantees on packet delivery,

selectable on a per packet basis. In addition to unreliable and reliable but unordered

quality of service (QoS) levels, Rmp can provide atomic, reliably delivery of packets

ordered with respect to each source. It can also e�ciently provide delivery of packets

in both total and causal order, using causal ordering as de�ned in [16]. Totally ordered

delivery also provides virtual synchrony, as �rst de�ned by the ISIS project [23]. Virtual

synchrony guarantees that when new members join or leave a group these operations

appear to be atomic, so that the sets of messages delivered before and after each mem-

bership change are consistent across all sites. Using K-resilient fault tolerance, Rmp

can provide total ordering and atomicity guarantees even in the face of site failures and
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partitions. For a set of packets with a resilience level of K, more than K members of a

group have to simultaneously partition away or fail in order to have the possibility of

violating the total ordering and atomicity guarantees. By setting K to a number larger

than half the members of a ring and not allowing minority partitions to continue, total

ordering, atomicity, and virtual synchrony can be guaranteed in the face of any set of

arbitrary partitions and failures.

The basic Rmp model of communication is a publisher/subscriber model based on

textual group names. In the absence of network partitions, any member of a group (a

subscriber) will receive all packets sent (published) to the group associated with that

group name. Rmp also provides a client/server model of communication, where the

servers are members of a group and the clients are not members, but can communi-

cate with the servers by sending packets to the group. These packets may be simply

acknowledged after being delivered to the group with the requested QoS, or they may

be responded to by a single member of the group. Rmp uses handlers to guarantee

that at most one member will respond to a data packet. Each data packet in Rmp has

an optional handler number associated with it. These correspond to a set of mutually

exclusive handler locks which group members may hold. The group member who holds

a given handler lock will be noti�ed upon delivery of a data packet with this handler

number that it is supposed to respond to the request. Handler locks are provided in a

very e�cient way, and can be used for any type of application that requires mutually

exclusive locks shared among a group of communicating processes.

A common belief in the research community is that totally ordered reliable multicast

protocols are inherently slow. This belief has come about in large part due to the

experiences researchers have had with the early versions of ISIS, which for a long time

was the only system of this type available. ISIS has since become much faster [2], but

the misconception remains. Experience with Rmp belies this concept. Rmp was tested

on 8 SparcStation5's on a 10 Mb/sec (1250 KB/sec) Ethernet. In this environment, the
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throughput to a single destination is 1070 KB/sec, or 86% of the network capacity. For

group communication to any group of two or more destinations on a LAN, Rmp exceeds

not only the maximum throughput of TCP/IP, but any other possible non-multicast

and non-broadcast algorithm. This is because both the packet latency and throughput

of Rmp stay roughly constant as the number of destinations increase, whereas the

performance of other algorithms decreases linearly. For a group with 8 destinations,

Rmp has a 7.4 MB/sec aggregate throughput, which is 5.9 times the bandwidth of the

supporting Ethernet. The throughput for Rmp does not signi�cantly change as a factor

of the ordering guarantees, but the per packet latency does. A totally ordered packet

will on average have a latency approximately twice that of an unordered or source

ordered packet, and this increases for K-resilient packets. This QoS for latency tradeo�

is fundamental to distributed protocols, which is why Rmp allows this tradeo� to be

made on a per packet basis. Rmp demonstrates that a fault tolerant, reliable, atomic,

fully distributed, totally ordered multicast protocol can actually achieve much better

performance in group communication than systems that don't provide these features.

For a detailed discussion of the performance of Rmp, the reader is referred to [20, 19].

The biggest decision in building a reliable multicast protocol is how to guarantee the

reliability and stability of messages without sacri�cing throughput or latency. Latency

is de�ned as the time between when a site has a packet to send and when it is delivered

to the destination. A message is de�ned as going stable when the sender knows all

destinations have received it. This is the point at which it no longer needs to be held

for possible retransmissions. In a reliable multicast protocol, one of factors inuencing

throughput is the number of ACKs sent per packet, so it is important to minimize

this. In order to provide guarantees of total ordering and atomic delivery in the face

of failures, a reliable multicast protocol will often delay delivering a packet until after

it has received one or more acknowledgments of delivery. This latency for guarantees

tradeo� is fundamental to this class of protocols, which is why Rmp allows this tradeo�
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to be made on a per packet basis.

Traditional protocols use positive acknowledgments (ACKs) from the destination to

acknowledge successful receipt of a packet. While quickly providing stability of mes-

sages, this approach does not scale well to a multicast system, because each destination

has to send an ACK for each packet or set of packets. The use of positive acknowl-

edgements largely defeats the advantage of using multicast packets, because it decreases

both the e�ciency and the performance of the protocol. Even though positive acknowl-

edgment messages are small, it is because they all are sent simultaneously that they can

cause network congestion. In addition, having to process an ACK from each destination

increases the load on the sender and decreases the performance of the protocol. One op-

timization is to not acknowledge every packet. In general, as the number of packets per

ACK increases, the length of time for a message to go stable increases, but the lower the

load is. As another approach, many systems use negative acknowledgments (NACKs).

Negative acknowledgments shift the burden of error detection from the source to the

destinations. Packets are stamped with sequential sequence numbers which destinations

use to provide reliable delivery by detecting gaps in the sequence numbers and request-

ing retransmission of the packets corresponding to the gaps. Because the information

that a packet has been received is never propagated back to the sender, the senders in

these protocols do not ever know for certain that a destination has received a packet.

Because of this, senders have to inde�nitely keep a copy of each packet sent if the proto-

col is to be considered truly reliable. In addition, a lost packet will not be detected until

another packet is received successfully, which may take a long time if the packet is the

last to be sent to the ring for a while. Because of these problems, the Rmp algorithm

uses a combination of these two approaches. The basic algorithm is based on the ideas

of the protocol originally done by Chang and Maxemchuk [8, 7].

The MBusI [6] was the original motivation for Rmp. It provides a central server

through which clients connect with TCP/IP streams, and an easy to use interface de-
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signed to ease the implementation of CSCW applications. It provides both total order-

ing of messages and reliable multicast, but has very limited scalability, since all packets

must be routed through a central point, and duplicate copies sent to each destination.

The Totem protocol [18] is perhaps closest to Rmp in its approach, and has reported

similar throughput levels to Rmp under heavy load. It also uses a rotating token

ring approach, but only provides for a single ring for each broadcast domain. Totem

avoids using any ACKs by only allowing the current token holder to send data. This

provides high throughput under high load over a low latency network, but provides lower

throughput and longer latency under low and asymmetrical loads. In addition, because

it only allows a single sender to transmit at a time it will provide lower throughput

over longer latency networks. To alleviate this problem they have proposed, but not

implemented, gateways to link multiple broadcast domains together.

The ISIS system [23, 1] is one of the pioneering protocols in this �eld. It provides

causal ordering and, if desired, total ordering of messages on top of a reliable multicast

protocol. The reliable multicast protocol requires separate acknowledgments from each

destination, which limits performance. A new system that provides causal ordering on

top of IP Multicast has been implemented which is much more e�cient than the old

system [2], and we are comparing Rmp and this new protocol.

The Psync protocol [3] is an ingenious protocol that uses piggybacked ACKs to

provide causal ordering of messages and detection of dropped packets. However, both

it and the similar Trans [21] and Lansis [15] protocols require that all of the members of

the group regularly transmit messages. The Trans protocol and the ToTo protocol [14]

implemented on top of Lansis both provide total ordering of messages. These algorithms

require that at least a majority of the group members be heard from before a message

can be delivered, which causes latency to increase by at least an order of magnitude.

For example, for the ToTo protocol to send to a group of 8 destinations under heavy,

periodic load from all sources (the best case), the latency is 23.8 ms. This increases to
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114.1 ms for lightly loaded poisson sources.

The Multicast Transport Protocol (MTP) [11] is an example of an asymmetric reli-

able multicast protocol. One site is the communication master which grants "tokens"

to group members to allow them to send data. These tokens provide both ow control

and total ordering of messages. This causes over dependency on the master, which lim-

its both reliability and performance. MTP also relies exclusively on NACKs for error

recovery, which limits reliability and requires extreme amounts of bu�er space.

The protocol by Crowcroft and Paliwoda [9] is one of the �rst protocols to propose

reliable multicast over an internetwork which supports hardware multicast. The proto-

col provides di�erent levels of reliability guarantees, and uses positive acknowledgments

from all destinations for reliability. The paper analyzes the ooding problems that oc-

cur with simultaneous ACKs from many destinations and proposes a windowed ow

control system, in some ways similar to that used in Rmp, to alleviate these problems.

The xAmp protocol [24] is distributed but also waits for ACKs from all destinations,

and so will exhibit performance similar to the earlier versions of ISIS.

The broadcast protocol proposed by Kaashoek et. al. [12] uses a central token

site to serialize messages and NACKs for retransmissions. It piggybacks ACKs onto

sent messages and has the token site regularly contact silent sites in order to limit

bu�er space. This protocol has reported very good latency (as low as 1.3 ms for a

NULL packet) because it has been implemented on top of bare hardware. However,

because each message must be transmitted twice it will fundamentally achieve lower

throughput than Rmp { 600 KB/sec is a rough upper bound for a 1250 KB/sec Ethernet,

as compared to 842 KB/sec for Rmp. This will also limit the latency for larger messages;

as a 8KB packet in their protocol will spend a minimum of 13.1 ms on the Ethernet, as

opposed to 6.7 ms for the message and ACK of Rmp.
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3 RMP Fault Model

RMP is a modi�cation of a Post-Ordering Rotating Token algorithm originally devel-

oped by Change and Maxemchuk[7]. A pass of the token around the ring provides

ordering noti�cation to all group members. The token itself acts as a combination

of positive and negative acknowledgments to group members for message ordering and

reliable delivery without the overhead of large numbers of unicast acknowledgment mes-

sages. A message is delivered, or stable, if the token is rotated to each of the group

members in turn. Once the token has made a complete circuit, it is guaranteed that

packets acknowledged previous to the start of the circuit have been received by all group

members at that moment.

The actual modi�cations from the original Chang and Maxemchuk algorithm are

quite extensive [20, 19]. Two of the most signi�cant areas of rede�nition and extension

are in the categories of fault recovery and group membership. Originally, the algorithm

only dealt with steady state operation and a very restrictive fault recovery process,

i.e. no attention was played to changing the number of members during operation or of

relaxing the fault recovery process to allow applications with less stringent requirements

to continue operation. RMP expanded this by adding the ability to change a groups

membership dynamically so that members can join and leave a group, integrating this

ability into the protocol operation smoothly, and using the concept ofmembership views

to adjust the fault recovery process on an individual group basis.

3.1 Membership Views

Applications using RMP will receive asynchronous events from RMP layer that indi-

cate delivery of messages, some exceptional conditions being met, or a change to the

group in some way. A membership view is a snapshot of a group's current membership

information that is passed up to the application. This snapshot is part of the globally

ordered sequence of events that all group members perceive. All group members receive
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the same sequence of events, both messages and membership views, regardless of the

underlying event sequence imposed by an unordered and unreliable network. The mem-

bership view concept allows RMP to provide a virtually synchronous execution model

to applications using it. Virtual synchrony was de�ned by Ken Birman from his work

on the ISIS system[23, 1]. \Intuitively, this means that the user can program as if the

system scheduled one distributed event at a time"[23]. This approach greatly simpli�es

distributed application development and provides a convenient service upon which con-

�gurable systems can be built. The original Chang and Maxemchuk algorithm fails to

provide virtual synchrony due mainly to its lack of membership changes, however, the

algorithm also violates virtual synchrony by allowing members to be added during the

fault recovery process.

A change in the membership view is an event that returns the new membership view

and noti�es the application as to the type of event that took place. Some of the more

interesting and useful membership view change types are:

� A member has been added to group (or formed own group)

� A member has been removed from group

� A member received a lock 1

� A member was denied a lock

� A member released a lock

� A member changed the Minimum Size Requirement (MSR) (see Section 3.3)

� Some other member change occurred (add, remove, lock change, etc.)

� A fault was detected and recovery is complete

� Group scoping was changed (i.e., a change in the IP Multicast Time-To-Live (TTL)
�eld)2

When a membership change occurs, an application is noti�ed that a group change

has occurred, what kind of operation occurred (join or leave), and the status of the

group after the change. The change can be categorized into three classes. First, a

change may be a local change that a�ects only the noti�ed member. Local changes are

1RMP provides 256 mutually exclusive locks for members to use.
2RMP uses the IP Multicast scoping mechanism of Time-To-Live (TTL) for controlling the propagation of RMP

multicast tra�c to group sites on a Wide-Area Network such as the Internet.
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the results of requests such as asking to join a group, asking to be removed from a group,

or requesting a change to a lock. Remote changes are changes that a�ect other sites.

These include local changes to other group members, but to an individual application

the changes appear to be remote. Finally, global changes a�ect more than one member

of a group. These are changes such as change of group scoping, noti�cation of fault

recovery completion and the result of the recovery process.

RMP delivers a membership change event to the application upon the completion

of the fault recovery process. This process, called reformation, may be successful or

unsuccessful depending on extent of site failures, partitions, or leave events. At the end

of the reformation process, the result of the reformation is delivered as an event to the

remaining group members. Thus an application can examine the membership view and

the result of the fault recovery process in order to decide what actions it must take to

remain operational. In addition to noti�cation of a fault, RMP allows the application

to specify message resiliency on a per message basis as well as allowing each member to

have a \vote" on the minimum size of a group to be allowed to proceed after a failure.

3.2 RMP Failure Assumptions

Key to any fault recovery and detection system is de�ning under what circumstances

and assumptions the system is assumed to operate. The result of any fault recovery

operation can be: (1) a success, (2) an atomicity violation, or (3) a failure. An atomicity

violation occurs when the fault recovery process can not attain a common sequence of

events between members of a group. In practice this situation is very rarely encountered,

but it is possible. Atomicity violations can occur because causally related events may

become misordered due to bu�ering or Internetworking constraints. RMP makes three

assumptions pertaining to failures. These are:

� A site failuremeans the site stops processing. The site does not interject corrupting
information into a group.
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� A message failure can be the result of an overly full bu�er at either the receiver or
the sender, or it may be the result of a transmission failure. (� 1% of packets on
current local and wide-area networks)

� A failure is detected by a group when communication with the group and a site
fails after R attempts. R must be chosen such that a failure is mistakenly detected
infrequently, but large enough to provide timely noti�cation of actual failures.

Additionally, RMP addresses the �rst assumption by supporting cryptographic au-

thentication. This does not completely remove the assumption, but it provides a mech-

anism whereby corruptive sites can be �ltered if they can be detected. This method also

provides protection from unknown sites that may try to corrupt RMP operation. How-

ever, this approach is only as secure as the means by which the members can retrieve

the authentication keys and the trustworthiness of the other mechanisms involved.

3.3 Fault Detection

As mentioned above under the failure assumptions, RMP performs failure detection

using a series of retransmissions of messages. If a certain amount of retransmissions are

attempted without a reply being seen, then the fault recovery process is initiated.

A duality between ow control and fault detection exists that is important to men-

tion. RMP's ow control mechanism uses a slight modi�cation of an adaptive ow

control scheme [13]. This scheme dictates retransmissions rates and timeouts between

retransmissions to avoid saturating the network during congestion. The adjustment in

retransmission periods has a direct bearing on fault detection in RMP. This aspect of

RMP operation is continually undergoing experimentation and analysis, however pre-

liminary experiments have shown that an R value set to 10 (for 10 retransmission at-

tempts), and capping the maximum retransmission period to 2 seconds provides timely

noti�cation on a LAN 3. In WAN environments, the R value must be set higher (to

well over 30 or more). Changes to the maximum retransmission period for WAN groups

310 attempts at 2 seconds per attempt implies a maximum detection time of 20 seconds
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have shown that 2 seconds 4 works best as long as the maximum packet sizes are also

kept small in order to reduce, or eliminate, fragmentation. Higher amounts of fragmen-

tation increase the likelihood of a packet being dropped due to a segment being lost.

Currently, RMP can adjust the R value based solely on the group scoping value (i.e.,

the IP multicasting packet TTL value). Thus it is easy to determine what R value to

use based on whether the RMP group stretches over multiple LANs or is based on a

single LAN. Other adaptive schemes could also be used to dynamically con�gure the

R value based on previous attempts and other ow control variables. However, this

approach must be carefully examined so that the R value does not grow too large to

make fault detection times too large 5.

3.4 Selection of Resiliency and Fault Tolerance Levels

An RMP application may choose message ordering and resiliency semantics on a per

message basis. These semantics are de�ned as RMP Quality of Service (QoS) values that

range from unreliable and unordered to totally ordered and totally resilient. RMP QoS

is organized into a hierarchy that begins with varying levels of ordering and progresses

into resiliency. Message resiliency is based on assurances that RMP places on how

many group members have received a given message using properties of the protocol

operation. In order to meet any resiliency guarantees, the message must also meet total

ordering guarantees. Thus all resilient messages are, by de�nition, totally ordered. K

resiliency assures that K members of a group receive the message. The value of K may

range from 1 to the size of a group, N . Majority resiliency is the special case where

K = bN=2c+ 1, and total resiliency corresponds to the case where K = N .

In RMP's execution model, message delivery and message resiliency are separate

causally related events. Message delivery is based on ordering alone, while resiliency

430 attempts at 2 seconds per attempt implies a maximum detection time of 60 seconds

5As some would say happens in TCP.
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is based on the number of token passes after total ordering is met. This separation

of delivery semantics from resiliency noti�cation allows applications to design e�cient

transaction and persistent object systems. In addition, RMP allows the application to

request noti�cation when a message has become stable. This noti�cation is another

event that the application may use to help facilitate its operational correctness with

respect to group consistency.

When a new member is added to an RMP group, the member, in e�ect, casts a

vote for the minimum size it requires to be maintained after a failure. The actual

minimum size of a group is the maximum of the votes from all members. ThisMinimum

Size Requirement (MSR) determines the fault tolerance level used by RMP during a

reformation. A member may change this vote at any time during normal operation.

Such a change is a change to the membership view and the application is noti�ed of

this change. The levels of fault tolerance closely reect the levels of message resiliency

discussed above. It is highly desirable for an application to use message resiliency and

a speci�c fault tolerance level to its advantage to provide assurances it may need, i.e.

majority resiliency combined with majority fault tolerance assures that if a fault is

recoverable, then someone in the group has the message if its resiliency was met. The

selectable levels of fault tolerance are:

� K Fault Tolerance - Up to N �K members may fail, N is the group size.

� Majority Fault Tolerance - Up to bN=2c � 1 members may fail. De�ning how this
majority is calculated may be done in one of two ways 6:

{ Optimistic - bN=2c+1, where N is de�ned as the number of members currently
in the group.

{ Pessimistic - bN=2c+1, where N is de�ned as the number of current members
plus members who have left since the last stability point.

� No Fault Tolerance - No members may fail.

If the desired fault tolerance level is not met after a reformation, then the reformation

is classi�ed as a failure and the application is noti�ed. At this point, the application

6Currently, RMP uses the optimistic method, however, a formal proof is still underway to determine if this is

correct or not.
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must then decide how to re-form or re-join the group and continue operation. A common

scheme for doing this is to use a logging facility to synchronize group members to a

speci�c point that they all agree upon, re-form or re-join the group, and then continue

operation.

4 Fault Recovery Process

The original Chang and Maxemchuk algorithm [7] presents a very high-level and re-

stricted reformation process that is not very applicable in many domains. RMP expands

on this by relaxing some requirements, specifying the algorithm using state tables [4, 5],

and accounting for other RMP features, such as Multi-RPC, security/authentication,

and dynamic membership changes. RMP does not allow members to be added through

reformation. This was allowed in the original algorithm, however it violates virtual

synchrony.

The fault recovery process must terminate and be free of livelock. This property

is absolutely critical for continuous operation especially when changes occur during the

reformation process itself. At each stage of the reformation process, secondary point

failures must be detected. In the state model this is done by using the normal fault

detection methods on the fault recovery messages and/or providing a timeout so that

the state is eventually changed. During the fault recovery process, the members of the

group attempt to come to a common synchronization point that indicates the ordering

that the fault will take in the global ordering of events. This point must be after all

events that have already been ordered by all members. This ordering allows faults to

actually be seen as just other events that occur and can be taken into account by the

application.
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4.1 Two-Phase Commit

The RMP fault recovery process is a Two-Phase Commit procedure. The member of

a group that �rst detects a fault is called the Reform Site for that reformation. The

reform site is responsible for coordinating and moderating the reformation process. The

other members of the group are then classi�ed as Slave Sites. Slave sites are passive and

reactive participants in the reformation process. The two phases are described below.

In Phase 1, the Reform Site multicasts noti�cation of failure to the group while

the Slave Sites unicast their responses to the Reform Site. These responses indicate a

synchronization point and desire to participate in the reformation process. The Reform

Site then determines the membership view for the reformation. This will consist of a

subset of the set of sites previously in the group before the fault was detected, i.e. if

S is the set of sites before the fault, then S0 � S, where S0 is the set of sites after the

fault. The sites not in S0 are sites that are considered to be dropped. The Reform

Site then determines the synchronization point common to all members of the group.

If this point is not reachable then an atomicity violation has occurred. If the MSR for

the group is met and an atomicity violation did not occur, then the membership view

is de�ned to be valid, otherwise, the view is assumed to be invalid. Thus an atomicity

violation indicates an invalid view regardless of meeting MSR or not.

In Phase 2, the new membership view is installed at the surviving sites. The Re-

form Site multicasts the membership view and the Slave Sites unicast their response to

acknowledge reception of the membership view. The Reform Site receives con�rmation

from all reformation participants of reception of membership view. If the new mem-

bership view is valid, then all the sites return to normal operation once reception of all

con�rmations is received and notify application of fault and successful fault recovery. If

the membership view is invalid, then all sites return to the RMP \idle" state and notify

the application of the fault and that fault recovery failed.7. If the membership view is

7In e�ect, this will disband the RMP group.
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valid and con�rmation from one or more members does not arrive within a retransmis-

sion cycle of the membership view, then the reform site assumes a secondary failure,

aborts the current reformation, and the process begins again.

The process is optimized so that when a failure is detected erroneously, RMP does

not spend vast amounts of time processing needless information. This optimization is

performed by short-circuiting some steps if all sites are heard from. Even more drastic

levels of optimization could be performed if the fault cause could be isolated. However,

this is very di�cult to perform generically with RMP.

4.2 Aborting a Reformation

In some cases it is necessary to abort the current reformation process and begin again.

This is performed in cases where multiple reformations are detected, or a secondary

failure is detected. Multiple reformations can be detected by the Reform or Slave

sites when fault noti�cation is originated by members other than the Reform Site.

Secondary failures of the Reform Site can be detected by the slave sites through the use

of retransmission cycles for the responses they unicast to the Reform Site. Secondary

failures of slave sites can be detected through retransmission cycles used in installing

the membership view by the Reform Site.

When a Reform or Slave Site sees a condition that suggests that reformation should

be aborted, that site then enters an Abort Reformation state and noti�es the group to

abort the current reformation. At any time during reformation, if a site sees this type

of noti�cation, then it must also enter the Abort Reformation state.

Members that enter the abort reformation process set a random timeout so that

deadlock in the process is avoided. The �rst site to have this timeout expire, then

becomes the new reformations reform site and starts the reformation process. While

in the abort reformation process, if a site detects a new reformation beginning, it then
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participates as a slave site 8.

4.3 Return to Normal Operation

Returning to normal operation is of high importance to any fault tolerant system. RMP

allows operation to continue in all cases, but the application must examine the result of

the reformation to assess the correct behavior. This may mean reforming a group and

rejoining its members (in the case of atomicity violations and failed reformations), or

continued processing (in the case of successful reformations).

Because RMP allows the application to specify a desired MSR, cases can arise where

network partitions can cause multiple groups to partition away and continue operation.

Once this occurs, RMP operation does not allow the new sub-groups to rejoin if the

network is repaired. This is achieved through the same mechanisms that RMP uses

to allow multiple groups to exist on a given multicast address. Each packet contains

an identi�er that explicitly identi�es that packet to belong to a speci�c group. This

identi�er is called a Token Ring ID, or TRID. A TRID is a triple guaranteed to be

unique in space (IP address and UDP port) and time (12 hour epoch timer). The

TRID is changed on a regular basis, i.e. every 45 minutes, and is also changed for every

attempted reformation. Thus two reformations that occur on a partitioned network

can be �ltered based solely on TRIDs. Allowing partitions to come back together can

more easily be done at a higher level than RMP. However, some work with other reliable

broadcast/multicast protocols have produced interesting methods of rejoining partitions

[15, 18]. Other methods of �ltering have also been suggested [17]. It is our belief that

applications can bene�t from these works to expand RMP's fault recovery process to

include successful recovery from atomicity violations and the rejoining of partitions.

8Several details here are elided for brevity, including using version numbers for membership views to determine

viability of reformations. The full details are given in [20, 25, 26]
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5 Conclusions and Future Work

RMP provides a mechanism for continuous, reliable, fault-tolerant, and atomic delivery

of messages in a multicast media even in the event of site failure, network partitions and

normal join-leave events. In addition, RMP provides an event-based API that presents

the application with a powerful and intuitive distributed programming model. This

model allows the application to make educated decisions about dynamic group recon-

�gurations of the application. RMP's fault recovery mechanisms allow the application

to tailor itself to any desired level of fault tolerance and message resiliency without

mandating that the application explicitly perform these functions itself.

Several important issues remain to be investigated including the possibility of con-

tinued operation using the group after an atomicity violation, abstractions for de�ning

semantics of a \majority" (pessimistically or optimistically) for an application, and ef-

fective ow control that is orthogonal (or at least alternatively complementary) to fault

detection. Isolation of faults in order to optimize the fault recovery process seems to

hold promise, but RMP's operation model allows special cases to exist where this issue

becomes very di�cult to tackle e�ectively.
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